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We study polynomial approximation on the whole real line with weight w = e - Q,

where Q has polynomial growth at infinity. The following are the main problems
considered: asymptotics for the Markov factors and for the rate of best approxima
tion of lxi, Jackson-type estimates for the degree of best approximation of some
classes of functions. ,Ie 1995 Academic Press. Inc.

INTRODUCTION

Let Q be an even continuous function on the whole real line R positive
on (0, oc), such that Q is increasing for sufficiently large x's and
Q( x )/log x -> rx as x -> oc, In what follows any function Q is presumed to
satisfy these properties, without explicitly mentioning it. (It should be
noted that in most of the previous papers dealing with the subject, proper
ties of Q are assumed to hold on the whole real line, We relax these and
further conditions on Q by assuming most of them for sufficiently large x's
only, thus emphasizing that in Q only the behavior at infinity is signifi
cant.)

In the last 10-15 years problems related to polynomial approximation
on the whole real line with weight

w( x) : = e - Qi.' I

have been widely investigated. The origin of these problems goes back to
works of S. N. Bernstein. Let us introduce the rate of best weighted
approximation

En*Cf, Q):= inf Ilw(x)(f(x) - p(x))11
pE lIN

(1)
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42 KROO AND SZABADOS

of a function IE C( R) satisfying the condition 11'( x) II(x) I= 0(1 ) ( Ixl -+ w).
Here, as usual, II" denotes the set of algebraic polynomials of degree at
most 11, and II· II stands for the supremum norm on R. Bernstein initiated
the study of the quantity E,,(lxl, Q). Let us mention here two basic results:

(i) E,,( lxi, Q) -+ 0 as 11-+ Cf) if and only if

(see Akhiezer and Babenko [I J );

(ii) for Q(x)=lxl we have E,,(lxl,Q)=O((Iogn) I) (see Bernstein
[3J, p.615).

Another central problem of weighted approximation concerns the so
called "Markov factors"

M,,(Q):= sup
fJE IIn ,poto

Ilw(x) p'(x)li

111I'(x)p(x)11
(2)

The study of these factors was started by Freud [6 J who showed that
M,,(Q) = 0(11 1 I') if Q(xj = Ixl"',:x ~ 2. Subsequently, Levin and Lubinsky
[IOJ extended this result for 1 <:x<2, while Nevai and Totik [12J proved
that l M,,( Q) -log n if ex = 1, and M) Q) is bounded if 0 <:x < 1. Moreover,
Levin and Lubinsky [ 11 J proved that if Q satisfies certain smoothness and
growth conditions on R then M,,( Q) = 0(1,,( Q)), where

.Qi -1:(,,) Q(t)
I,,(QI:= J -, dt

I t-
(3)

(Here and in what follows Q: - I: stands for the inverse function of Q;
by assumption, this inverse function exists for sufficiently large x's.
Accordingly, some of the statements below hold only for sufficiently
large n's; sometimes this will be indicated by writing n? no' It should be
also noted that in [11] the authors use another equivalent form I" (Q)
S': dt/Q{-Jl(t).)

Some lower bounds for M,,( Q) can be easily deduced with the help of
the so-called Mhaskar-Rahmanov-SafI number a" = a,,( Q) > 0 defined as
the smallest interval [-a", a"J where the norm llw(x) p(x)11 is attained
for any pEII", i.e. where this norm "lives." (It is easy to see that a,,< ex.
Under some additional conditions on Q, a" can be given as a solution of

I In general, IJ.,,- fi" will mean that the ratio IJ."iP" falls between two positive constants as
n ---+ x'.
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a certain equation. We will not use this formula, since we do not want
to restrict Q in this way.) Namely, with !lx"w(x)\1 =x~w(xo) (O<xo:(a ll )
we get

whence 2 by (2)

(4)

For weights with polynomial growth (i.e., satisfying relations (13) below)
all :( cQi . Il (11) (see our Lemma 3), which together with the last inequality
leads to a lower bound n/Ql-I}(n) for MII(Q). (Here and in what follows
c, C" C2' ... will always denote positive constants depending only on Q, not
necessarily the same at each occurrence.) This lower bound is sharp
when

I
· . flog Q(x) I1m In > ,
X~J. logx

(5)

but is weaker than the upper bound III (Q) when (5) fails to hold.
One of the main goals of this paper is to verify that under certain

conditions on Q at infinity,

I
Mil ( Q) ~ £,;( Ix[, Q) ~ III ( Q). (6)

Here the lower bound for Mil (Q) and the asymptotics for £,;( lxi, Q) are
new. Moreover, we give a new proof of the upper bound for M,,( Q), which
seems to be considerably simpler than the one given in [11], and also
allows to relax substantially the restrictions imposed upon the weight Q in
[ II ].

For functions f E C(R) satisfying w(xrlf(x)! = v( I) with some 0 < I' < 1,
we shall also investigate the order of magnitude of £:U, Q), providing
some Jackson-type estimates and discussing lower bounds as well.

The paper is divided into two sections. The first part is devoted to
verifying (6), while the second is concerned with estimating the quantity
E,;(/' Q).

2 We mention that an indication of a possible proof of (4) is mentioned in [11] (see the
bottom of p. 1067).

640'831·,
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1. ASYMPTOTICS FOR M,,(Q) AND E/~(lxl, Q)

We start with proving the following useful auxiliary statement.

THEOREM 1. There exists a constant c> 0 such that

c
M,,( Q) ~ E:( lxi, Q)' (7)

Proof Without loss of generality we may assume that 11'(0) = 1. Let
p,,(x)=I:Z~o bkxk be such that

w(x) I Ixl - p,,(x)! ~ E/~( lxi, Q)

Then by simple iteration (see (2»)

(xER). (8 )

(k=O, 1, ..., n),

Ip~k)(O)1 M~(Q)
Ibkl = k! ~ k! Ilw(x) p,,(x)11

~(eMk(Q)r K (9)

where K = 2 Ilw(x) lxlil. It is well known that there exists an absolute
constant:x > 0 such that

:x
max Ilxl- q(x)1 ?-
Ixl"; I n

for every qEII" (n= 1,2, ... ). Set:X l :=maxO,,;x";l{ l/w(x)} and

( 10)

( II )

where [ ... ] indicates integer part. We may assume that r,,>2eM,,(Q), since
otherwise there is nothing to prove. (Note that M,,( Q) ~ 2 IIwll/K for every
n? 1.) Then using (8), (9), and (10) we have
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Combining this estimate with (11 ) we arrive at

I.e.,

In view of (11) this easily implies the needed statement.

45

Theorem 1 yields that in order to verify the asymptotic relations (6) it
suffices now to provide upper estimates for £:(Ix[, Q) and Mn(Q).

We start with verifying the upper bound for £:( lxi, Q). We shall accom
plish this with the help of the following basic result of Bernstein:

LEMMA I (Bernstein [3,p.615]). LetR2nEll2n,R2n(0)=Ibeaneven
polynomial with positive coefficients and denote by (h (k = I, ..., 2n) the
moduli of its roots. Then

. f Illxl- p(x) II (I 1)-1
p~l/n II jR2n (x) <4 k~l (h

(12)

Furthermore we shall have to impose some mild restrictions on Q.
Namely, it will be assumed that

{

QE Cl [xo, ~) for some X o> 0, and

(13 )
. . xQ'(x) . xQ'(x)

0< A( Q) := h,m mf -Q-- ~ B( Q) := hm sup -Q-- < oc.
\- y. (x) x~y. (x)

It is easy to see from (13) that for sufficiently large x, Q(x)/x~ is increasing
and Q(x)/x fJ is decreasing whenever (X < A( Q) ~ B( Q) < P< oc. Moreover,
using the relation

log Q(b) =fb Q'(t) dt
Q(a) (l Q(t)

we can also deduce from (13) that for sufficiently large x's and for any
x<A(Q)~B(Q)<P<ocand c> I

c~Q(x) ~ Q(cx) ~ cfJQ(x), (14 )
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i.e., Q(cx) - Q(x) as x ---> X). In addition, if Q satisfies (13) then a similar
relation holds also with respect to its inverse Q: ... 1:, and therefore we have,
in particular, that for any cx<B(Q) I :(A(Q)-I <fJ<x and c> I

(15 )

for large x's. We shall frequently use the above properties of Q satisfying
( 13) without further reference.

THEOREM 2. Let Q satis!)' condition ( 13). Then

(16 )

Proof Let li < A(Q} :( B( Q} < fJ < oc, and choose an integer s ~ I so
that 2s > {1. Set

Qll(x}:= fI (1 + QI ~~~;kf') E ill.""
k ~ k"

where k o is sufficiently large so that Ql . I: (k) is well defined for k ~ k o. We
shall verify that Iqll(x)1 = O(w(ex) I) (XE R). Since Q(x}h:fl is decreasing,
evidently QI -I} (x) > c I X 1/1/ for x ~ x o. Hence

7 ~

L Q: 1:(k)-ls:(Cl L k-ls//I<OC,

k =k" k ~k"

and therefore our claim is evident if Ixl :( X o' Thus we may assume that
Ixl ~ xo. Then

Furthermore, using that Q(x)/x'" is increasing if x ~ X o we get integrating
by parts

n
k,,";k ,,;Qlxl ko,,;,k,,; Qix)

(f Q(X) )

~ exp ku log Q{ -I} (t) dt - log x
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( fx Q(U) )= exp Q( X) log x - , , -- du - C log x
Q' -1'Ik,,1 U

(
Q(x) 'x du )

~exp Q(x) Iogx--_~-J ]::-;-cllogx
-, x(} u

= exp[ Q(x) log x + O( Q(x))].

Moreover,

l
·QI.') 1

:(exp x 2' I Qi- I }(!l2'dt+I :(II'(X)-I
.. ko

Collecting the last there estimates yields

47

PI :( X
2
'QI\1 exp[ -2sQ(x) log x + O( Q(x))] :( w(x) , (17)

On the other hand, since Q(x)/x li is decreasing for x ~ x o, and 2s > fJ,

l ' .I dt 1 l'· r
X

dQ( u) J:(exp r' I f ,.+(' =exp x~·, J. --,.-+C
"Qlxl Q\-II(!l-.' \. u-·,

l
,y 2sQ(u) 1

:( exp x 2
' j. -,.- du + c

U
-., + 1.,

l ,. .f. du J
:( exp 2sr' -fiQ(x) L U 2'-/i+ 1+ c = exp(2sQ(x) + c). ( 18)

Since qn = PI P2 we obtain from (17), (18) and (14) that Iq,,(x)!:(
\1'( x) -Ci :( 11'( ('2 x) - 2 for x E R. This easily leads to a polynomial

such that

jiJn(x):( W(X)-I (xER). ( 19)
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Furthermore, if (ldk = 1, ..., 2s(n - k o+ 1)) are the moduli of the roots of
q" then obviously

1 2.1'1,,-ku +l) 1 " 1 ." de

2s k~l (.!k =c k~kU Ql-1}(k)~cL., Ql Il(t)

f
Q1 - 1I1 ,,) dQ(u)

~c --
QI )llk.,) U

Finally, using (12) (with q" instead of q,,), (19) and (20) we arrive at

c£*(1_1 Q)~--
.>11 ., ""'I,,(Q)'

and this implies the statement of Theorem 2, since by (13) and (14)
I" (Q) - C( Q) for any fixed positive integer c.

Combining Theorems 1 and 2 we now have the needed upper bound for
£,t( lxi, Q) and lower bound for M" (Q). In order to complete the proof of
the asymptotic relations (6) it is sufficient to show that M,,(Q)~cI,,(Q).

For this purpose we shall modify slightly condition (13). In fact, we shall
preserve the lower bound

A(Q) I· . fxQ'(x) 0
= 1m In -.-> ,

\~X Q(x)

and impose a slightly stronger upper bound

(211

(22)

where it is assumed that Q E C 2[xo, CQ) with some X o> O. It is easy to see
that B(Q)~C(Q)+I for B(Q) as in (13). Hence (21) and (22) imply (13).
It should be also noted that condition (22) implies the polynomial growth
of Q'(x). Now we can formulate the following result.

THEOREM 3. Let QEC 2 [Xo, (0) for some xo>O and assume that (21)
and (22) hold. Then

(23)
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Remark. As it was mentioned in the Introduction, the upper bound
(23) for the Markov factor was given by Levin and Lubinsky [11] under
stronger restrictions on Q. Namely, they assume that Q E C 2 (0, 00) and for
every x E (0, (0)

xQI/(x)
-1<Al~ , ~A?<oc.Q (x) -

(24)

It is easy to see that AI + 1 ~A(Q), whence the lower bound of (24)
implies, in particular, that (21) holds. Thus restrictions (21) and (22) are
weaker than (24) in two respects. First of all they remove any restrictions
on Q for small x's, only the behavior of Q at infinity is relevant. Second,
the lower bound (21 ) is weaker than the lower bound of (24). For example,
if Q(x) = x J + lOx sin x + 20 (0 ~ x < oc) then (21) and (22) hold but the
lower bound in (24) fails even for large values of x. Finally, we mention
that the proof of (23) below is based on a different approach and is
significantly shorter than the one given in [11].

COROLLARY 1. Under the conditions of Theorem 3 the asymptotic
relations (6) hold.

Our proof of Theorem 3 will be based on the following inequality which
holds for any polynomial p(z) (see [4], Theorem 6.5.4 on p. 92)

log Ip(z)! ~M fY

. log 1~(t)1 ? dt
n _Y~ (t-u)-+v·

(z=u+ivEC\R). (25)

We shall need an auxiliary result providing estimates for Ip;,(x)1 for
Ixl ~ M. Statements similar to Lemma 2 and Corollary 2 below can be
found in Dzrbasyan [7], Theorem n.2.

LEMMA 2. Let Q be arbitrary, M> 0 and p" En". Then we have

Ip~(x)1 ~c(M, Q) (I,,(Q) + Q{-~}(n)) Ilw(x)p,,(x)11

(Ixl ~ M, 11 ~ 110 ), (26)

where c(M, Q) > 0 is a constant depending only on M and Q.

Proof Without loss of generality we may assume that Ilwpllll = 1. We
shall give an upper bound for Ip,,(z)! when z=x+Q"ei"'(lcpl ~n, Ixl ~M)
with Q,,:=(/n(Q)+n/Q{-II(n))-l<co(n~no),and then estimate Ip~(x)1
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using the Cauchy integral. Let :: = u + iv, where u = x + Q/I cos cp,
1'= Q/I sin cp. Then by (25)

Since Ixi ~ M and lui ~ Ixl + Co ~ M + Co'

In 12 we can use that It-ul > Itl/2 leading to

Finally, using that

(29)

(
2 IX I)/I

\qn(x)\ ~ - max \q/l(x)\
a Ixl'Sa

(this follows from a rough estimate for the Chebyshev polynomials), we get

whence for sufficiently large n's

Ivl 211'1 n JO".o log2et/Q(-I}(n) cn(1/1
- I, ~-- 0 dt ~ I II .
1t. 1t QI-11inl t- Q - (n)

(30)

Taking into account (27)-(30) yields that Ip/I(::)I ~ elM, Q) for ~

x + Qn ei'l'( \cpl ~ 1t). Now a standard application of the Cauchy formula for
p~ (::) results in (26).

COROLLARY 2. If Q is such that

f"· Q(t)
-2~OO dt < 00,

I t
(31)



APPROXIMAnON ON THE REAL LINE

then for every p" E fl"

51

(lx'~M), (32)

where C I (M, Q) > 0 depends only on M> 0 and Q.

Proof By the monotonicity of Q and (31), I" (Q) = O( 1), and

n ff. =nQ' -11(n) Q:

i.e., (32) follows from (26).

Remark. The above corollary is somewhat more general than a result
of Nevai and Totik [12] who show that Ip;,(O)1 ~ c(M, Q) if (31) holds.
Furthermore, if in addition to (31 ) we also assume that

sup [Q(x + y) - Q(x) - Q(y)] < e/J
x. VE R

(33)

then by a standard translation argument we can conclude that sup" E;\/ M" (Q)

< Xc, i.e., the Markov factors are bounded. (In [12] the authors assume the
concavity of Qbut the weaker condition (33) suffices here.) Moreover, apply
ing Theorem 1 we obtain the following criterion for the boundedness of the
Markov factors.

COROLLARY 3. Let Q sati.\ir (33). Then in order that SUPIIE '" M,,( Q) <x

it is necessary and suffident that (31 ) holds.

For the proof of Theorem 3 we need an upper bound for the Mhaskar
Rahmanov-Saff number a" mentioned in the Introduction.

LEMMA 3. IfQ satisjles (13) then all~cQi -J}(n) (n~no)'

It should be noted that the relation all = O( Ql -I} (n)) also can be
obtained from the known equation for the quantity all' but this requires
additional assumptions on Q which are avoided in Lemma 3.

Proof Assume that for apE fl ll , 1\ wp II is attained for x" ~ 0, and set
u(x)=w(x)p(x), x=Qi-ll(n)y, xll=Q{-li(n)y", u(y)=u(Q{-II(n)y),
p(y) =p( Ql - If (n) y). Then without loss of generality we may assume that
max lrl ,;; I Ip(Y)1 = I. Hence

Jii(Y,,)1 = Iriili ~ max lii(Y)1 ~e-",
1"1';; 1

and by the Chebyshev inequality Ip(y)1 :( (2y)" (Iyl ~ 1),
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Assume that YII?: I (otherwise there is nothing to prove). By (14), for
sufficiently large n's and any O<a<A(Q), Q(QI-I}(n)YII)?:nJ'~'Then

c "~lu(y,,)I=w(QI-Ii(n)y,,) Ip(Y,,)1

~ lV( QI ··1\ (11) Y,,)(2YII)" ~ (2Yll c -y~)",

and thus eV~ ~ 2eYIl' Evidently, this implies that 0 ~ Y" ~ CI' and the lemma
is proved.

Pro()[ of Theorem 3. Assume that !p,,(x)! ~W(X)1 (xER). First we
recall that (21) and (22) imply (13), hence, in particular, (14) and ( 15) also
hold. This easily yields that

11 f(JI-IIIII) dt fQI-IIIII) Q(t)
I n 2~ C -2- dt ~cIlI(Q),

Q{ I (n) QI 111111/2 t Qi 11(111/2 t
(34)

i.e., in view of Lemma 2 we can restrict ourselves to sufficiently large x's.
On the other hand, by the definition of the Mhaskar-Rahmanov-Salf
number all' it suffices to give an upper bound for Ip;,(x)1 when 2~.\0~

x ~ a,l' with .\0 being sufficiently large. Let

where C is the same as in Lemma 3. Then 0 < (111 ~ I (n?: no), and
I ~ u ~ x + I. Using again (25) we have

log IplI(z)1 ~Mf- log Ip,,(t)~ - ~(u) dt + Q(u)
n -y (t-u) +t

Ivl (f"'2 I" I~II/2 f2iin f )
=---;: -2<i

n
+ 11/2 + II + 3u/2 + III;, 2<i

n
+ Q(u)

5

:= L Ii + Q(u).
i=1

(35)

Applying Lemma 3 we can estimate Is similarly as in (30) which together
with (34) yields Is = O( I). Furthermore,

_MJ2iin Q(t) - Q(u) ~ JCJ QI -11(11) Q(t) _
- .. )' 2 dt"" C(1" ? dt - 0(1).n -u/2 (t + u "+ V I t-
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Similarly,

f
2U. Q(t) f2u. Q(t)

/4 ~ C(!n 2 dt ~ C 1 (!" . ~ dt = O( I).
3u/2 (t - u) 3ui2 t

Finally, with some ~, (t/3 ~ 2u - t <~, < t) we get

Ivj (f'.'. f3U/2) Q(t) - Q(u)
12+J3~- + , ,dt

n ui2 Ii (t-u)-+v-

-M f3U
/
2 Q(t) - 2Q(u) + Q.(2u - 1)- " mn U (t-u)"+t'-

IvI f3u/2 "): ( t - u) 2

=~ U Q (s,) (t-U)2+ V2 dt.

When x, and hence u, is large enough then by (22) (and (13))

Using this in the previous estimate,

S3

Thus collecting the above estimates and substituting them into (35) implies
for some tl between x and u

log IPn(z)1 ~ Q(u) + O( I) ~ Q(x) + (!n Q'(tl) + O( I).

Using again (13) and Lemma 3 we obtain just like in (34)

These inequalities imply

log IPn(zli ~ Q(x) + O( I).

Hence by the Cauchy integral formula we obtain

Co
w(x) Ip~(x)1 ~ - = cJ,,(Q).

On

This completes the proof of Theorem 3.
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2. ORDER OF WEIGHTED ApPROXIMATION ON THE REAL LINE

This section is devoted to Jackson-type estimates of the quantity
E,;U: Q) defined by (1). In what follows, it will be more convenient to
assume that Q( x) is increasing on (0, CG ) (and not just for sufficiently large
x's). This additional restriction could be avoided but it would make the
proofs more technical than desired. We shall study functions belonging to
the class

C( y, Q) := {IE C( R): f(x) lI'(x); --+ 0 as Ixl --+:z:,},

where " is a fixed constant, 0 < /' < I. Moreover, we shall use the following
modulus of continuity for an fE ny, Q)

W;.(/; 11):= sup
.'.:, \'E R

!'\- .1'/ .:s-h

If(x)-f(Y)1
11'( x) ;' + 11'( y) - )'

(11)0).

Evidently, for every f E C( y, Q) we have w;,U; 11) --+ 0 as 11 --+ +0. It is easy
to see that

and consequently

(I))f )..11)";; (21e + 2) (1);,(/ h) (11,). > 0). (36)

Jackson-type estimates for this approximation problem in case of Freud
type weights Q (with some further restrictions on Q) are studied in detail
in Ditzian and Totik [6]. A different modulus of continuity is introduced
there which leads to a precise description of the rate of E,;U: Q) for Freud
type weights. In this section we shall give estimates for a very general class
of weights Q. The only restriction we are imposing on Q is the rather mild
growth condition

). . f Q(xv)
r := 1m In 1"-> I.

\.Y~h Q(x) og y
(37)

However, we have to pay a price for this generality. Our method is based
on the modulus of continuity introduced above which requires that
fE C(y, Q), and in addition, a superfluous logarithmic term appears in our
estimate.

Let us now formulate the main result of this section.
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(38)

THEOREM 4. Let 0 < )' < I and assume that Q sati~'lies (13). Then for
erery f E C( I"~ Q) we have

* . ( ,Q: I:(n) IOgn) .£,JI, Q) ~Jo((). J, , + 3MU)e ell ;1"
, (I - )')n '

where M;(/):= illl'(xV/(x)ll.

Remark. When Q(x) = lxi' (IX> I), we have by (6)

£,;(Ixl, Q)~n -II 1>/.

On the other hand (38) yields £,;(!xl,Q)=O(n-II-li,llogn), thus, in
general, (38) is sharp apart from the log n factor. It should also be noted
that (38) implies a convergence to 0 only if Qi li(n)=o(n/!ogn),

In order to verify (38) we shall need some preliminaries,
Let p,'':( /, x) E nIl denote the polynomial ofbest approximation off on R, i.e.,

111I'(x)(j(X) - p,~U: x))11 = £,;U; Q),

Then there exist equioscillation points x o, ..., x" + I E R such that

II'(X,)(/(X,) - p,~U; Xi))

= 1:( - II' £,;U: Q)

By [13], p.28, Theorem 2.5.1

(i = 0, .. " 11 + I; I: = I or - I ).

where

U(f
X o XI

U(g
X o XI

X" )

X n + 1

X" )

X II + 1

(39)

TI('PO '" 'P"+I) '=d t(' ,( ",)\"+1v. . . e 'P, XI 1"j~O'
'\0 ... .\" + I

and g is such that lI'(xi )g('\·j) = (-I)' (i = 0, ,.. ,11 + I). Furthermore,
denoting by B the n x (n + I) matrix with elements x~ + I - x~ (i = I, ..., n;
j = 0, .. ', 11) and by Bk the determinant of the matrix obtained from B by
deleting its kth column we have, after some simple transformation

(
f ' I ... \")U . .

X o X\ .,. X,,+I

11 "

=(-1)" L (_I)k L (-I)k[f(xk+I)-f(xk)]Bk,
k~O k=O
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and similarly
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(
g 1 X")

OetU Xl) Xl X,,+l

"
=(_1)"+1 I. [W(Xk+l) I+W(Xk)-I]Bk·

k~O

Thus we obtain from (39)

where

Bk

dk =L:" [ -I' -I]j~O }V(Xj + I) + W(Xj ) Bj

(k =0, ..., n). (41 )

(An expression similar to (40) is given in the periodic case in Babenko and
Shalaev [2]; see also Bojanov [5], whose ideas are used in the proof of
the next lemma.)

LEMMA 4. With the previous notations, let

if XE[Xk,Xk+ l ] (k=O, ... ,n),

otherwise.
(42)

Then lor every p" 1 E fi" I we have

f p". dx) i/J,,(x) dx = O.
R

(43)

Proof For given xo, ... , X,,+ I> formula (40) gives an expression for the
best approximation of lout of fi" in the seminorm

11/11*:= max {w(xJI/(x j )!}.
O~i~n+J

Therefore for every Pn E nn

0= i (-I)kdk[Pn(xk+d-Pn(xk)]= f t/Jn(x)P;,(x)dx.
k=O R
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COROLLARY 4. We have dk > 0 (k = 0, ..., n) and

E:U, Q) ~ 4w ..(f, J,,),

where

57

(44)

"
15,,:= L: dk[w(Xk) -;·+W(Xk+,)'](Xk+l-xd· (45)

k~O

Proo! By (41)

I dk[H'(Xk)-1 +W(Xk+I)-I] = l.
k~O

(46)

The first claim follows now immediately from (42), (43) and (46),
Furthermore, using (40), (36), (45) and (46) we have

"
E,,*(f, Q) ~ I dk /f(Xk + 1) - f(xdl

k~O

~ L dk [ w( Xk) - !' + w( Xk + 1) - ;] OJ)'U; xk + , - X k)
k~O

"
~ 2 L: dk [ w( Xk)-)' + w( x k + I ) - )' ]

k~O

LEMMA 5. Let Q satish' (37). Then there exist constants Cl' C2 > 0 such
that for every p" E fl" and n large enough we have

W(x)!p,,(x)1 ~ e- q
" Ilw(x)pl/(x)1I (47)

Proo! We may assume that Ilw(x)p,,(x)11 = l. Then for Ixi ~ Ql-11 (n)
we have !p,,(x)1 ~ el/. Using the Chebyshev inequality for the growth of
polynomials we get

(48)

Assume that cI~(2e)I/lr-l) and 11 are sufficiently large so that by (37)
we have for arbitrary a ~ CI

Q(aQll} (n)) ~ rn log a.
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This and (48) yield that if x=aQI 11(11) (with arbitrary a~cl)' then for
every p" E fl"

lI'(x)lp,,(x)1 ~ (2ea)" a -m = (2ea l
- ')".

Since a ~ c I ~ (2e} li(, - I) (r > I) we obtain the statement of the lemma with
a proper C2> O.

The next statement concerning the "needle polynomials" is well known
(see e.g., Kroo and Swetits [9], Lemma 3 ).

LEMMA 6. Let -I ~a<b~ I, d:=(b-a)/4, al :=a+d, hi :=b-d.
Theil there exists a p" E fl" such that p" ~ 0 on [- I, I], p" ~ 1 on
[ - I, I ] \ [a, 17 ] and

(49)

Proof of Theorem 4. As above, we denote by p,;(f) the best weighted
approximant of f E C(}', Q), and let x) (j = 0, ... , 11 + I) be the equioscil
lation points. We may assume that

r,,(/):= max Ix) ~CI Q( Ii (11), (50)
o ~J:O::::;11 +- I

where C 1 is the same as in Lemma 5. Indeed, if Ix)1 ~CI QI- 1:(11) for some
O~j~ll+ I, then by LemmaS

E,nr. Q) = lI'(x/) If(·\) - p,;U: .x)\

~M;.U) lI'(x/:+e-"" II lI'(x)P,;Cr. x)11

~ M;.U)e -q( 1-;'1" + 2e-"" Ilw(x) f(x)11 ~ 3M;"U) e- cil - )'1".

Hence (38) holds.
We now apply Lemma 6 with [- I, 1] replaced by [- r,,(f), r"U)]

(this can be achieved by a homogeneous transformation of the variable).
Then for any [xk , Xk + I] there exists a PlIo k E fl,,_ I (k = 0, ... , n) such that
P".k ~ 0 on [ -r"U), r"U)], p".k ~ I on [ -r"U), r"U) ]\(Xb Xk + d, and
by (50)

(51)

(
. ._(3Xk +Xk+1 X k +3Xk + l ) -0 )

.X E Jk • - 4 ' 4 ' k - , ..., n .
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Using these properties of Pn. k' the orthogonality relation (43), as well as
(42) and (46), we get

n

= L dk(Xk+l-Xk)
k~O

})

~c I dk[w(Xk)-I+H'(Xk+tl-I]=c.
k=O

This and (51) yield that

(52)

Now we shall give an upper bound for E:U, Q) using Corollary 4. Set
Xk:=max(lxkl, IXhll) (k=O, ...,n), a:=2/(c2(l-y)) (C2 as in (52)), and
let

Obviously U;= 1 K j = {k : 0 ~ k ~ n}. Now by (45)

Furthermore, by (46) dk ~ w(Xd, whence

640'83/1·6

(53)
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Using (50) we have
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(54)

For the second sum we have by (46)

aQi 1 1 (11) log 11
~------

11

Finally, for the third sum we use (52)

[
2y ] c c

~ 4e I exp --" log n - ae2 log 11 ~ ~ I I ~.-:'..
k E KJ I - ( n k E KJ 11

(55)

(56)

Thus we obtain from (53)-(56) that 15n~cQ{-I}(n)logll/«(1-)')n).This
together with (44) yields the desired result.

Theorem 4 provides a sufficiently sharp upper bound for £,;U: Q) when
Q satisfies (13) with A(Q) > I, because in this case (38) is exact up to the
log 11 factor. On the other hand, it is well known that E,;U: Q) -> 0 as
n-> oc; for every / E C( y, Q) if and only if In( Q) -> oc; as n -> ClJ (cf.
Akhieser-Babenko [I]). Thus in order to have a complete result one
would need to estimate £,;U: Q) in terms of I n ( Q). Ideally, one would
expect that (38) can be strengthened to

(57)

Since In(Q)-n/Q{-lf(n) when (13) holds with A(Q»I, estimation (38)
is rather close to (57) in this case.

The problem of verifying (57) appears to be quite hard. We can prove
only the following weaker statement.

THEOREM 5. Let Q satis/v (13) and assume that 0 < }' < I, 0 < I: <
(l-y)/(2-y). Then/or every fEC(y,Q) there exists a e:=e(c,j;Q»O
such that

(58)
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Proof We shall approximate f by piecewise linear functions
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N

t.v (x) := I A k Ix - X k I+ Ex + C
k~ -N

(x E [ -X,\" X ,'I] ) (59)

and use (16) for approximating Ix-xkl.
Set N:=[In(Q)'J, p:=Q{-I!(logNI(l-r)), where r>O will be chosen

below. Let x k :=kpIN (k= -N, ... , N) and let IN(x) be the piecewise linear
function (59) which interpolates f(x) at the Xk'S. We also assume that IN (.,)

is extended from [ - p, p] to R as a constant (preserving continuity). It can
be easily shown that the parameters A k in (59) satisfy

(60)

ForXE[Xk>Xk+l] we have

If(x) -1,'1(x)1 ,;;; max f(Y) - mm f(y) := f(,,) - f( C,)
Xk ~ y ~Xk +1 Xk ~ Y E; :q+ I

,;;; w)f, pIN)[ w(xd -;' + W(Xk+ tl-)'] ,;;; ((0)1; piN) W(X)-I

(.;,,, E [:rk> x k + I]' k = -N, ... , N).

When Ixi > p we have

If( x) -1!V(x)1 ,;;; If(x)1 + IIN(x)1 ,;;; ew(;r) -)' + If(p)1 + If( - p)1 ,;;; C I w(x) )'

Combining the last two estimates we get, using that w(p) = N I
/ i ;' - II,

w(X) If(x) -1,dx)l,;;; c[w)'U: piN) + lI'(p)l-i']

';;;clw)f,p/N) (xER). (61)

Furthermore, applying (16) with Q replaced by JQ (J > 0 sufficiently small)
we obtain that for every k = -N, ..., N there exists a Pk. nE lln such that

C c*(o)
Ilw(x - Xk)J (Ix -xkl- Pk. n(x))11 ,;;; In(JQ) ,;;; I

n
( Q)' (62)

with some c*(J) > 0 depending on J. Since Q satisfies (13) it follows that

Q(x -Xk)';;; Q( Ixl + IXkl)';;; Q( Ixi + p)';;; c( Q(x) + Q(p)) (xER).

(63)

Thus if J is sufficiently small then we have from (62)

c*(J) w(p)-«j c*(J)N""
II w(xHlx- xkl-Pk n(x))II,;;; ,;;; .

. ~(Q) ~(Q)
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Moreover by (60)

IAk 1 ~ 2w;,(/, p/N) W(p) ;' NIP ~ no)1; 1/N) N I,ll - )'1.

Thus there exists a P: E fl" for which with r = (1- y)/(2 - y) - Cl

(0 < CI < c) and J small enough

w (f liN) Ni 2 -)'liil--)'I+<",,)

Ilw(x)(lN(X)-P,~(x))11~C,j )' , I 1,,(Q) =O(w)f,l/N)).

Combining this with (61) and taking into account that

p = Q{ -II (lOg N) = O((log N)fl)
l-y

with some p> 0, we obtain (58).

Remark. For small [; and }' the estimation (58) approaches
0(l,,(Qr- 1i2

). For example, when Q(x)=lxl then I,,(Q)~logn, and (58)
yields O(log-I/2+En). Of course, when Q(x) = Ixl~ with ex> 1 then
1,,(Q)Nnl-1;<x and (38) is much stronger than (58). Thus Theorem5
provides a method for estimating E,,*(f; Q) which is useful for Q(x)~ Ixl.
It also complements (38) in the sense that in case I,,(Q)-> IX (n-> (0) it
yields E,;(f; Q) -> 0 (n ->ex).

As far as the authors know, Theorem 5 is the first Jackson-type estimate
which covers also the "singular" case when Q(x) is around Ixl. (These
weights are excluded in [6].) It has to be noted that the restriction
f E C( y, Q) is not very essential in Theorem 5; it is related to the specific
modulus of continuity considered there. The method of Theorem 5 can
be applied for estimating E f;(/, Q) for arbitrary f E C( R) satisfying
limlxl_>e w(x)lf(x)1 =0, and Q satisfying (13), but this would require a
more technical modulus of continuity. (Note that such a modification of
Theorem 5 would include then the result of Akhiezer and Babenko [1].)

Let us mention now some possible lower bounds for E,,*(/, Q). One
method is essentially shown in the proof ofTheorem 1. We shall formulate now
a somewhat more general statement. Let w(j: h) := suP,., E [ _ I. I]. Ix _ yl ",; II

If(x) - f(Y)1 be the usual modulus of continuity of fE C[ -1, 1J, and
En(f) := infpElln maxl'l"'; I If(x) - p(x)1 the error of best approximation
on [ -1, 1].

THEOREM 6. Assume that for an fEC(R), lI'(x)lf(x)I=O(I) as
Ixl-> 00, and for an infinite subset Q c N we have

(nEQ). (64)
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(11 E Q). (65)

The proof is very similar to that of Theorem I and therefore we omit the
details.

Let us mention that when Q satisfies (13) with A(Q» I then Mn(Q)
n/QI II(n), i.e., (65) leads to

This lower bound should be compared with the upper estimate (38).
Another approach to estimating E,~U; Q) from below is similar to the

Stechkin-type inequality on [ - I, I]

To this end, assuming

[L,/iJ

w(/, t) ~ ct I nE,,(/).
11=0

(66)

consider the Markov factor M n ( Q), n E N and a function M(x) such that
M(n) - M,,(Q) and M(x) is strictly increasing for large x's. Using this nota
tion we can verify the following analogue of (66) for weighted approxima
tion when IE C( I, Q) (i.e., )' = I):

[Mi-Ji(I/II]

wdf: t) ~ ct I
k=O

M(k) *
k + I En (f, Q). (67)

The proof of (67) is very similar to (66); one just has to use the Markov
factor M,,( Q) instead of the classical Markov constant n2

. For instance, for
the Freud weights Q(x) = Ixl'" (~> I) we have M(x) _ x/QI ~ 1\ (x) = Xl ~ 1/",

(x> 0), implying

[/'-...11 - :ll]

WIU;t)~ct L k-I/"'Etif,Q)·
k=O

Thus, in particular, if E/~(/, Q) = O(k ~fi) with 0 < f3 < I - I/ex then
wdf, t) = O(t"'fii{"'~ I)). This again shows that (38) is exact apart from the
log factor.
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